
LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

NAME
libcgraph − abstract graph library

SYNOPSIS
#include <graphviz/cgraph.h>

TYPES
Agraph_t;
Agnode_t;
Agedge_t;
Agdesc_t;
Agdisc_t;
Agsym_t;
Agrec_t;
Agcbdisc_t;

GLOBALS
Agmemdisc_t AgMemDisc;
Agiddisc_t AgIdDisc;
Agiodisc_t AgIoDisc;
Agdisc_t AgDefaultDisc;

GRAPHS
Agraph_t *agopen(char*name, Agdesc_t kind, Agdisc_t *disc);
int agclose(Agraph_t*g);
Agraph_t *agread(void *channel, Agdisc_t *);
Agraph_t *agmemread(char*);
void agreadline(intline_no);
void agsetfile(char*file_name);
Agraph_t *agconcat(Agraph_t*g, void *channel, Agdisc_t *disc)
int agwrite(Agraph_t*g, void *channel);
int agnnodes(Agraph_t*g),agnedges(Agraph_t *g), agnsubg(Agraph_t * g);
int agisdirected(Agraph_t* g),agisundirected(Agraph_t * g),agisstrict(Agraph_t * g), agissimple(Agraph_t * g);

SUBGRAPHS
Agraph_t *agsubg(Agraph_t*g, char *name, int createflag);
Agraph_t *agidsubg(Agraph_t* g, unsigned long id, int cflag);
Agraph_t *agfstsubg(Agraph_t*g), agnxtsubg(Agraph_t *);
Agraph_t *agparent(Agraph_t*g);
int agdelsubg(Agraph_t* g, Agraph_t * sub); /* same as agclose() */

NODES
Agnode_t *agnode(Agraph_t*g, char *name, int createflag);
Agnode_t *agidnode(Agraph_t*g, ulong id, int createflag);
Agnode_t *agsubnode(Agraph_t*g, Agnode_t *n, int createflag);
Agnode_t *agfstnode(Agraph_t*g);
Agnode_t *agnxtnode(Agraph_t*g, Agnode_t *n);
Agnode_t *agprvnode(Agraph_t*g, Agnode_t *n);
Agnode_t *aglstnode(Agraph_t*g);
int agdelnode(Agraph_t*g, Agnode_t *n);
int agdegree(Agraph_t *g, Agnode_t *n, int use_inedges, int use_outedges);
int agcountuniqedges(Agraph_t* g, Agnode_t * n, int in, int out);

EDGES
Agedge_t *agedge(Agraph_t*g, Agnode_t *t, Agnode_t *h, char *name, int createflag);
Agedge_t *agidedge(Agraph_t* g, Agnode_t * t, Agnode_t * h, unsigned long id, int createflag);
Agedge_t *agsubedge(Agraph_t*g, Agedge_t *e, int createflag);
Agnode_t *aghead(Agedge_t*e), *agtail(Agedge_t *e);
Agedge_t *agfstedge(Agraph_t*g, Agnode_t *n);

28 FEBRUARY 2013 1

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

Agedge_t *agnxtedge(Agraph_t*g, Agedge_t *e, Agnode_t *n);
Agedge_t *agfstin(Agraph_t*g, Agnode_t *n);
Agedge_t *agnxtin(Agraph_t*g, Agedge_t *e);
Agedge_t *agfstout(Agraph_t*g, Agnode_t *n);
Agedge_t *agnxtout(Agraph_t*g, Agedge_t *e);
int agdeledge(Agraph_t*g, Agedge_t *e);
Agedge_t *agopp(Agedge_t*e);
int ageqedge(Agedge_t*e0, Agedge_t *e1);

STRING ATTRIBUTES
Agsym_t *agattr(Agraph_t *g, int kind, char *name, char *value);
Agsym_t *agattrsym(void *obj, char *name);
Agsym_t *agnxtattr(Agraph_t*g, int kind, Agsym_t *attr);
char *agget(void *obj, char *name);
char *agxget(void *obj, Agsym_t *sym);
int agset(void *obj, char *name, char *value);
int agxset(void *obj, Agsym_t *sym, char *value);
int agsafeset(void *obj, char *name, char *value, char *def);
int agcopyattr(void *, void *);

RECORDS
void *agbindrec(void *obj, char *name, unsigned int size, move_to_front);
Agrec_t *aggetrec(void *obj, char *name, int move_to_front);
int agdelrec(Agraph_t*g, void *obj, char *name);
void aginit(Agraph_t* g, int kind, char *rec_name, int rec_size, int move_to_front);
void agclean(Agraph_t* g, int kind, char *rec_name);

CALLB ACKS
int *agpopdisc(Agraph_t*g);
void agpushdisc(Agraph_t*g, Agcbdisc_t *disc);
int agcallbacks(Agraph_t* g, int flag);

MEMORY
void *agalloc(Agraph_t *g, size_t request);
void *agrealloc(Agraph_t*g, void *ptr, size_t oldsize, size_t newsize);
void agfree(Agraph_t*g, void *ptr);

STRINGS
char *agstrdup(Agraph_t*, char *);
char *agstrdup_html(Agraph_t*, char *);
int aghtmlstr(char*);
char *agstrbind(Agraph_t* g, char *);
int strfree(Agraph_t*, char *);
char *agcanonStr(char*);
char *agstrcanon(char*, char *);
char *agcanon(char*, int);

GENERIC OBJECTS
Agraph_t *agraphof(void*);
Agraph_t *agroot(void*);
int agcontains(Agraph_t*,void*);
char *agnameof(void*);
void agdelete(Agraph_t*g, void *obj);
int agobjkind(void *obj);
Agrec_t *AGDAT A(void *obj);
ulong AGID(void *obj);
int AGTYPE(void *obj);

28 FEBRUARY 2013 2

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

ERROR REPORTING
typedef enum { AGWARN, AGERR, AGMAX, AGPREV } agerrlevel_t;
typedef int (*agusererrf) (char*);
agerrlevel_t agerrno;
agerrlevel_t agseterr(agerrlevel_t);
char *aglasterr(void);
int agerr(agerrlevel_t level, char *fmt, ...);
void agerrorf(char*fmt, ...);
void agwarningf(char *fmt, ...);
int agerrors(void);
agusererrf agseterrf(agusererrf);

DESCRIPTION
Libcgraph supports graph programming by maintaining graphs in memory and reading and writing graph
files. Graphsare composed of nodes, edges, and nested subgraphs. These graph objects may be attributed
with string name-value pairs and programmer-defined records (see Attributes).

All of Libcgraph’s global symbols have the prefixag (case varying). Inthe following, if a function has a
parameterint createflagand the object does not exist, the function will create the specified object ifcreate-
flag is non-zero; otherwise, it will return NULL.

GRAPH AND SUBGRAPHS
A ‘‘main’’ or ‘‘root’’ graph defines a namespace for a collection of graph objects (subgraphs, nodes, edges)
and their attributes. Objectsmay be named by unique strings or by integer IDs.

agopencreates a new graph with the given name and kind. (Graph kinds areAgdirected, Agundirected,
Agstrictdirected, and Agstrictundirected. A strict graph cannot have multi-edges or self-arcs.) The final
argument points to a discpline structure which can be used to tailor I/O, memory allocation, and ID alloca-
tion. Typically, a NULL value will be used to indicate the default disciplineAgDefaultDisc. agclose
deletes a graph, freeing its associated storage.agread, agwrite, and agconcatperform file I/O using the
graph file language described below. agread constructs a new graph whileagconcatmerges the file con-
tents with a pre-existing graph. Though I/O methods may be overridden, the default is that the channel
argument is a stdio FILE pointer. agmemreadattempts to read a graph from the input string.agsetfileand
agreadlineare helper functions that simply set the current file name and input line number for subsequent
error reporting.

The functionsagisdirected, agisundirected, agisstrict, and agissimplecan be used to query if a graph is
directed, undirected, strict (at most one edge with a given tail and head), or simple (strict with no loops),
respectively,

agsubgfinds or creates a subgraph by name.agidsubgallows a programmer to specify the subgraph by a
unique integer ID.A new subgraph is initially empty and is of the same kind as its parent.Nested sub-
graph trees may be created.A subgraph’s name is only interpreted relative to its parent.A program can
scan subgraphs under a given graph usingagfstsubgand agnxtsubg.A subgraph is deleted withagdelsubg
(or agclose). Theagparent function returns the immediate parent graph of a subgraph, or itself if the graph
is already a root graph.

By default, nodes are stored in ordered sets for efficient random access to insert, find, and delete nodes.
The edges of a node are also stored in ordered sets. The sets are maintained internally as splay tree dictio-
naries using Phong Vo’s cdt library.

agnnodes, agnedges, and agnsubgreturn the sizes of node, edge and subgraph sets of a graph. The func-
tion agdegreereturns the size of the edge set of a nodes, and takes flags to select in-edges, out-edges, or
both. Thefunctionagcountuniqedgesreturns the size of the edge set of a nodes, and takes flags to select
in-edges, out-edges, or both. Unlikeagdegree, each loop is only counted once.

NODES
A node is created by giving a unique string name or programmer defined integer ID, and is represented by a
unique internal object. (Node equality can checked by pointer comparison.)

28 FEBRUARY 2013 3

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

agnodesearches in a graph or subgraph for a node with the given name, and returns it if found.agidnode
allows a programmer to specify the node by a unique integer ID.agsubnodeperforms a similar operation
on an existing node and a subgraph.

agfstnodeandagnxtnodescan node lists.agprvnode andaglstnodeare symmetric but scan backward.
The default sequence is order of creation (object timestamp.)agdelnoderemoves a node from a graph or
subgraph.

EDGES
An abstract edge has two endpoint nodes called tail and head where all outedges of the same node have it as
the tail value and similarly all inedges have it as the head. In an undirected graph, head and tail are inter-
changeable. Ifa graph has multi-edges between the same pair of nodes, the edge’s string name behaves as
a secondary key.

agedgesearches in a graph or subgraph for an edge between the given endpoints (with an optional multi-
edge selector name) and returns it if found or created.Note that, in undirected graphs, a search tries both
orderings of the tail and head nodes. If thename is NULL, then an anonymous internal value is generated.
agidedgeallows a programmer to create an edge by giving its unique integer ID.agsubedgeperforms a
similar operation on an existing edge and a subgraph.agfstin, agnxtin, agfstout, and agnxtout visit
directed in- and out- edge lists, and ordinarily apply only in directed graphs.agfstedgeandagnxtedgevisit
all edges incident to a node.agtail andagheadget the endpoint of an edge.agdeledgeremoves an edge
from a graph or subgraph.

Note that an abstract edge has two distinct concrete representations: as an in-edge and as an out-edge. In
particular, the pointer as an out-edge is different from the pointer as an in-edge. The functionageqedge
canonicalizes the pointers before doing a comparison and so can be used to test edge equality. The sense of
an edge can be flipped usingagopp.

INTERNAL ATTRIBUTES
Programmer-defined values may be dynamically attached to graphs, subgraphs, nodes, and edges.Such
values are either character string data (for I/O) or uninterpreted binary records (for implementing algo-
rithms efficiently).

STRING ATTRIBUTES
String attributes are handled automatically in reading and writing graph files.A string attribute is identified
by name and by an internal symbol table entry (Agsym_t) created by Libcgraph.Attributes of nodes,
edges, and graphs (with their subgraphs) have separate namespaces. The contents of anAgsym_t have a
char* name for the attribute’s name, achar* defval field for the attribute’s default value, and anint id
field containing the index of the attribute’s specific value for an object in the object’s array of attribute val-
ues.

agattr creates or looks up attributes. kind may beAGRAPH, AGNODE, or AGEDGE. If value is
(char*)0), the request is to search for an existing attribute of the given kind and name. Otherwise, if the
attribute already exists, its default for creating new objects is set to the given value; if it does not exist, a
new attribute is created with the given default, and the default is applied to all pre-existing objects of the
given kind. If g is NULL, the default is set for all graphs created subsequently. agattrsym is a helper func-
tion that looks up an attribute for a graph object given as an argument. agnxtattr permits traversing the list
of attributes of a given type. If NULL is passed as an argument it gets the first attribute; otherwise it
returns the next one in succession or returnsNULL at the end of the list.aggetandagsetallow fetching
and updating a string attribute for an object taking the attribute name as an argument. agxgetandagxsetdo
this but with an attribute symbol table entry as an argument (to avoid the cost of the string lookup).Note
thatagsetwill f ail unless the attribute is first defined usingagattr. agsafesetis a convenience function that
ensures the given attribute is declared before setting it locally on an object.

It is sometimes convenient to copy all of the attributes from one object to another. This can be done using
agcopyattr. This fails and returns non-zero of argument objects are different kinds, or if all of the attributes
of the source object have not been declared for the target object.

28 FEBRUARY 2013 4

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

STRINGS
Libcgraph performs its own storage management of strings as reference-counted strings.The caller does
not need to dynamically allocate storage.

agstrdup returns a pointer to a reference-counted copy of the argument string, creating one if necessary.
agstrbind returns a pointer to a reference-counted string if it exists, or NULL if not. All uses of cgraph
strings need to be freed usingagstrfree in order to correctly maintain the reference count.

The cgraph parser handles HTML-like strings. These should be indistinguishable from other strings for
most purposes. To create an HTML-like string, useagstrdup_html. Theaghtmlstr function can be used to
query if a string is an ordinary string or an HTML-like string.

agcanonStr returns a pointer to a version of the input string canonicalized for output for later re-parsing.
This includes quoting special characters and keywords. It uses its own internal buffer, so the value will be
lost on the next call toagcanonStr. agstrcanonis an unsafe version ofagcanonStr, in which the applica-
tion passes in a buffer as the second argument. Note that the buffer may not be used; if the input string is in
canonical form, the function will just return a pointer to it.For both of the functions, the input string must
have been created usingagstrdup or agstrdup_html. Finally, agcanonStr is identical withagcanonStr
except it can be used with any character string. The second argument indicates whether or not the string
should be canonicalized as an HTML-like string.

RECORDS
Uninterpreted records may be attached to graphs, subgraphs, nodes, and edges for efficient operations on
values such as marks, weights, counts, and pointers needed by algorithms.Application programmers define
the fields of these records, but they must be declared with a common header as shown below.

typedef struct {
Agrec_t header;
/* programmer-defined fields follow */

} user_data_t;

Records are created and managed by Libcgraph. A programmer must explicitly attach them to the objects in
a graph, either to individual objects one at a time viaagbindrec, or to all the objects of the same class in a
graph viaaginit. (Note that for graphs, aginit is applied recursively to the graph and its subgraphs if
rec_size is negative (of the actual rec_size.))Thenameargument of a record distinguishes various types of
records, and is programmer defined (Libcgraph reserves the prefix_ag). If size is 0, the call toagbindrec
is simply a lookup. The functionaggetreccan also be used for lookup.agdelrecdeletes a named record
from one object.agcleandoes the same for all objects of the same class in an entire graph.

Internally, records are maintained in circular linked lists attached to graph objects.To allow referencing
application-dependent data without function calls or search, Libcgraph allows setting and locking the list
pointer of a graph, node, or edge on a particular record. This pointer can be obtained with the macro
AGDATA(obj). A cast, generally within a macro or inline function, is usually applied to convert the list
pointer to an appropriate programmer-defined type.

To control the setting of this pointer, themove_to_front flag may beTRUE or FALSE. If move_to_front
is TRUE, the record will be locked at the head of the list, so it can be accessed directly byAGDATA(obj).
The lock can be subsequently released or reset by a call toaggetrec.

DISCIPLINES
(This section is not intended for casual users.)Programmer-defined disciplines customize certain
resources- ID namespace, memory, and I/O - needed by Libcgraph.A discipline struct (or NULL) is
passed at graph creation time.

struct Agdisc_s { /* user’s discipline */
Agmemdisc_t *mem;
Agiddisc_t *id;
Agiodisc_t *io;

28 FEBRUARY 2013 5

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

} ;

A default discipline is supplied when NULL is given for any of these fields.

ID DISCIPLINE
An ID allocator discipline allows a client to control assignment of IDs (uninterpreted integer values) to
objects, and possibly how they are mapped to and from strings.

struct Agiddisc_s { /* object ID allocator */
void *(*open) (Agraph_t * g, Agdisc_t*); /* associated with a graph */
long (*map) (void *state, int objtype, char *str, unsigned long *id, int createflag);
long (*alloc) (void *state, int objtype, unsigned long id);
void (*free) (void *state, int objtype, unsigned long id);
char *(*print) (void *state, int objtype, unsigned long id);
void (*close) (void *state);

};

open permits the ID discipline to initialize any data structures that it maintains per individual graph.Its
return value is then passed as the first argument (void *state) to all subsequent ID manager calls.

alloc informs the ID manager that Libcgraph is attempting to create an object with a specific ID that was
given by a client. TheID manager should return TRUE (nonzero) if the ID can be allocated, or FALSE
(which aborts the operation).

free is called to inform the ID manager that the object labeled with the given ID is about to go out of exis-
tence.

map is called to create or look-up IDs by string name (if supported by the ID manager). Returning TRUE
(nonzero) in all cases means that the request succeeded (with a valid ID stored through result. There are
four cases:

name != NULL and createflag == 1: This requests mapping a string (e.g. a name in a graph file) into a new
ID. If the ID manager can comply, then it stores the result and returns TRUE. It is then also responsible for
being able to print the ID again as a string. Otherwise the ID manager may return FALSE but it must
implement the following (at least for graph file reading and writing to work):

name == NULL and createflag == 1: The ID manager creates a unique new ID of i ts own choosing.
Although it may return FALSE if it does not support anonymous objects, but this is strongly discouraged
(to support "local names" in graph files.)

name != NULL and createflag == 0: This is a namespace probe. If the name was previously mapped into
an allocated ID by the ID manager, then the manager must return this ID. Otherwise, the ID manager may
either return FALSE, or may store any unallocated ID into result. (This is convenient, for example, if names
are known to be digit strings that are directly converted into integer values.)

name == NULL and createflag == 0: forbidden.

print is allowed to return a pointer to a static buffer; a caller must copy its value if needed past subsequent
calls. NULLshould be returned by ID managers that do not map names.

The map and alloc calls do not pass a pointer to the newly allocated object. If a client needs to install
object pointers in a handle table, it can obtain them via new object callbacks.

IO DISCIPLINE
The I/O discipline provides an abstraction for the reading and writing of graphs.
struct Agiodisc_s {

int (*fread)(void *chan, char *buf, int bufsize);
int (*putstr)(void *chan, char *str);
int (*flush)(void *chan); /* sync */

} ;
Normally, the FILE structure and its related functions are used for I/O. At times, though, an application

28 FEBRUARY 2013 6

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

may need to use a totally different type of character source. The associated state or stream information is
provided by thechan argument toagreador agwrite. The discipline functionfread andputstr provide the
corresponding functions for read and writing.

MEMOR Y DISCIPLINE
Memory management in Libcgraph is handled on a per graph basis using the memory discipline.
struct Agmemdisc_s { /* memory allocator */

void *(*open)(Agdisc_t*); /* independent of other resources */
void *(*alloc)(void *state, size_t req);
void *(*resize)(void *state, void *ptr, size_t old, size_t req);
void (*free)(void *state, void *ptr);
void (*close)(void *state);

} ;
Theopen function is used to initialize the memory subsystem, returning state information that is passed to
the calls toalloc, resize, and free. The semantics of these should be comparable to the standard C library
functionsmalloc, realloc, and free, except that new space created byagalloc and agrealloc should be
zeroed out.The close function is used to terminate the memory subsystem, freeing any additional open
resources. For actual allocation, the library uses the functionsagalloc, agrealloc, and agfree, which pro-
vide simple wrappers for the underlying discipline functionsalloc, resize, and free.

When Libcgraph is compiled with Vmalloc (which is not the default), each graph has its own heap.Pro-
grammers may allocate application-dependent data within the same heap as the rest of the graph.The
advantage is that a graph can be deleted by atomically freeing its entire heap without scanning each individ-
ual node and edge.

CALLB ACKS
An Agcbdisc_t defines callbacks to be invoked by Libcgraph when initializing, modifying, or finalizing
graph objects. Disciplines are kept on a stack. Libcgraph automatically calls the methods on the stack, top-
down. Callbacksare installed withagpushdisc, uninstalled withagpopdisc, and can be held pending or
released viaagcallbacks.

GENERIC OBJECTS
agroot takes any graph object (graph, subgraph, node, edge) and returns the root graph in which it lives.
agraphof does the same, except it is the identity function on graphs and subgraphs. Note that there is no
function to return the least subgraph containing an object, in part because this is not well-defined as nodes
and edges may be in incomparable subgraphs.

agcontains(g,obj) returns non-zero ifobj is a member of (sub)graphg. agdelete(g,obj) is equivalent to
agclose, agdelnode, and agdeledgefor obj being a graph, node or edge, respectively. It returns -1 ifobj
does not belong tog.

AGDATA , AGID , and AGTYPE are macros returning the specified fields of the argument object. The first
is described in theRECORDS section above. The second returns the unique integer ID associated with the
object. The last returnsAGRAPH, AGNODE, andAGEDGE depending on the type of the object.

agnameofreturns a string descriptor for the object. It returns the name of the node or graph, and the key of
an edge.agobjkind is a synonym forAGTYPE.

ERROR REPORTING
The library provides a variety of mechanisms to control the reporting of errors and warnings. At present,
there are basically two types of messages: warnings and errors. A message is only written if its type has
higher priority than a programmer-controlled minimum, which isAGWARN by default. The programmer
can set this value usingagseterr, which returns the previous value. Callingagseterr(AGMAX) turns off
the writing of messages.

The functionagerr if the main entry point for reporting an anomaly. The first argument indicates the type
of message. Usually, the first argument inAGWARN or AGERR to indicate warnings and errors,

28 FEBRUARY 2013 7

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

respectively. Sometimes additional context information is only available in functions calling the function
where the error is actually caught. In this case, the calling function can indicate that it is continuing the cur-
rent error by usingAGPREV as the first argument. The remaining arguments toagerr are the same as the
arguments toprintf .

The functionsagwarningf and agerrorf are shorthand foragerr(AGERR,...) and agerr(AGWARN,...),
respectively.

Some applications desire to directly control the writing of messages. Such an application can use the func-
tion agseterrf to register the function that the library should call to actually write the message.The previ-
ous error function is returned. By default, the message is written tostderr.

Errors not written are stored in a log file. The last recorded error can be retreived by calling aglasterr.

The functionagerrors returns non-zero if errors have been reported.

EXAMPLE PROGRAM
#include <cgraph.h>
typedef struct {Agrec_t hdr; int x,y,z;} mydata;

main(int argc, char **argv)
{

Agraph_t *g;
Agnode_t *v;
Agedge_t *e;
Agsym_t *attr;
Dict_t *d
int cnt;
mydata *p;

if (g = agread(stdin,NIL(Agdisc_t*))) {
cnt = 0; attr = 0;
while (attr = agnxtattr(g, AGNODE, attr)) cnt++;
printf("The graph %s has %d attributes0,agnameof(g),cnt);

/* make the graph have a node color attribute, default is blue */
attr = agattr(g,AGNODE,"color","blue");

/* create a new graph of the same kind as g */
h = agopen("tmp",g->desc);

/* this is a way of counting all the edges of the graph */
cnt = 0;
for (v = agfstnode(g); v; v = agnxtnode(g,v))

for (e = agfstout(g,v); e; e = agnxtout(g,e))
cnt++;

/* attach records to edges */
for (v = agfstnode(g); v; v = agnxtnode(g,v))

for (e = agfstout(g,v); e; e; = agnxtout(g,e)) {
p = (mydata*) agbindrec(g,e,"mydata",sizeof(mydata),TRUE);
p->x = 27; /* meaningless data access example */
((mydata*)(AGDAT A(e)))->y = 999; /* another example */

}
}

}

28 FEBRUARY 2013 8

LIBCGRAPH(3) LibraryFunctions Manual LIBCGRAPH(3)

EXAMPLE GRAPH FILES
digraph G {

a -> b;
c [shape=box];
a -> c [weight=29,label="some text];
subgraph anything {

/* the following affects only x,y,z */
node [shape=circle];
a; x; y -> z; y -> z; /* multiple edges */

}
}

strict graph H {
n0 -- n1 -- n2 -- n0; /* a cycle */
n0 -- {a b c d}; /* a star */
n0 -- n3;
n0 -- n3 [weight=1]; /* same edge because graph is strict */

}

SEE ALSO
Libcdt(3)

BUGS
It is difficult to change endpoints of edges, delete string attributes or modify edge keys. Thework-around is
to create a new object and copy the contents of an old one (but new object obviously has a different ID,
internal address, and object creation timestamp).

The API lacks convenient functions to substitute programmer-defined ordering of nodes and edges but in
principle this can be supported.

The library is not thread safe.

AUTHOR
Stephen North, north@research.att.com, AT&T Research.

28 FEBRUARY 2013 9

